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Chapter 1

Introduction

Thin sheet flows have been a matter of research interest for many years. Sir

Geoffrey Taylor has pﬁbﬁshcd a series of papers on the dynamics and stability of liquid
sheets, [1]. Dombrowski and Fraser have written a paper on the disintegration of
expanding cylindrical sheets, such as would be found in a fuel injector, [2]. Related work
has been done by Crapper on capillary waves on fluids of infinite depth, [3]. As long ago
as 1879, Rayleigh published a paper on the capillary break-up of a cylindrical liquid jet in

air, [4]. Interest in thin sheet flows has recently been renewed due to their potental

application in space radiators.

1.1 - Historical Perspective

A classic illustration of the methods of hydrodynamic stability is Rayleigh's theory
of the break-up of a liquid jet in air, such as the formation .bf drops by a thin jet of water
from a faucet. It had previously been shown that capillarity would lead to instability of a
round jet, because an axisymmetric deformation could decrease the surface area of the jet .
Rayleigh analyzed in detail the instability of a uniform basic flow of incompressible,
inviscid liquid within a cylinder; the liquid having a free surface gdvemcd by its surfaze
tension. The jet was found to be stable to all non-axisymmetric modes, but is uns:able to
axisymmetric modes whose wavelength is greater than the circumference of the jet.

Rayleigh's theory agrees well with experiments. Rayleigh also found that there is a
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recognized word, varicosity, to describe the axisymmetric instability. This is sometimes
called sausage instability now, [4].

In the second paper of Geoffrey Taylor's series he discussed the waves on thin
sheets of fluid. He showed that capillary waves are of two kinds, symmetrical waves in
which the displacements of opposite sides are in opposite directions, and antisymmetrical
waves in which the displacements are in the same direction, as shown by Figure 1-1. Any
disturbance can be regarded as composed of Lh“esc two types of waves. The
antisymmetrical waves were shown to be non-dispersive. The antisymrcetrical waves in a

sheet of uniform thickness caused by a point disturbance were shown to appear as two
narrow line-like waves. The symmetrical waves were very different, they were highly
dispersive and were propagated much more slowly than the antisymmetrical waves.

Experimentally, a point disturbance prodﬁces both kinds of waves simultaneously. The
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symmetrical waves in a sheet of uniform thickness caused by a point disturbance were

shown to appear as parabolas, [1].

In 1960, D. R. Brown carried out an experimental invesd gation of thin liquid sheet
flow in connection with a method of lacquer application known as curtain coating. In
curtain coating, the coating material passes through a thin slit and a liquid sheet is
produced. The width of the sheet is maintained by guide wires along the edges of the
sheet. The minimum liquid flow rate required to maintain a stable sheet is discussed, and
the effects of the impingement of the sheet on a rapidly moving surface are described, [5].

The stability of a viscous liquid curtain falling down steadily under the influence of
gravity was investigated by S. P. Lin in 1980. A linear stability analysis was carried out
and it was found that only the spadally growing disturbances whose group velocity points
toward the upstream direction were uns@ble. A critical Weber number was found. Any
sheet formed with a Weber number less than the cridcal Weber number was found to be

unstable, [6]. This was in good agreement with the experimental results found by Brown.

1.2 - Space Application

One way of significantly reducing the mass of a space radiator is to eliminate the
containing walls for the working fluid. Thus the working fluid is exposed to the vacuum
condition of space. Such an external flow radiator will have a lower mass than a heat pipe

type radiator. Ease of deployment and near immunity to meteoroid damage are two other

advantages of external flow radiators.

Currently there are three different designs for external flow radiators. They are the
liquid droplet radiator (LDR), the liquid belt radiator (LBR), and the liquid sheet radiator
(LSR). The Liquid sheet radiator uses a thin liquid sheet as the radiating surtace. The sheet

may be as thin as 0.0015 in.
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The idea behind the design of the liquid sheet radiator is to have the greatest surface
area for the least volume or mass. With a very thin liquid sheet the mass is very small,
while the surface area, both sides of the sheet, is quite large, allowing for much more
specific surface area than the LDR or LBR. Also, being a single sheet, the radiation of heat

from one droplet to another droplet is eliminated.
One of the advantages of the LSR is ease of design. The machining required for the

fabrication of the narrow slits that are used in producing the sheet does not require as much
precision as that for the fabrication of the many small holes for the liquid droplet radiator.
Also, the pump power will be less since the viscous losses for a single slit are less than that
for many small holes. Collection of the liquid is also greatly simplified since the sheet
coalesces to a single point, as will be shown later. The simpler design for the sheet
generator and collector should result in a lower mass for these comgonents, [7].

Due to its many advantages the LSR has been the subject of great interest in recent

years. This has resulted in the need to fully understand the fluid dynamics and stability of a

thin liquid sheet.
1.3 - Introduction to Liquid Sheet Flow

A liquid sheet is formed by forcing the working fluid through a very thin slit. Since
the sheet is so thin, the surface tension has a very pronounced effect. The sheet edges are
pulled towards the center of the sheet, (see Figure 1-2). This causes the sheet to take on a
triangular form. Due to conservation of mass the fluid must collect in the so-called edgze
cylinders that border the sides of the sheet.

In order to more fully understand the fluid dynamics of liquid sheet flow, a numbter
of analytical and experimental studies were carried out. The first analytical study, Chapter
2 Section 1, was to determine an analytical prediction for the sheet length over slit width

ratio for the liquid sheet. The second, Chapter 2 Section 2, was to determine the theoretical
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Figure 1-2 Phctograph of a Thin Liquid Sheet

cross-sectional shape of the edge cyiinders.

In addidon to the fluid dynamics of liquid sheet flow itis also of vital imgortance to
understand the stability of the flow. This is the focus of Chapter 3. In Chapter 3,2 lirear
stability analysis is presented on a non-planer iquid jet This analysis shows the possible

- instability of the edge cylinders.
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Chapter 4 has two main parts. In the first part, the experimental apparatus is

described. In the second part, the formation of holes in the sheet is discussed and the

method of eliminating those holes is presented.

Chapters 5 and 6 present the experimental procedures and the experimental results,
respectively. Experiments were carried out /to measure the length over width ratios for the
liquid sheet and comparisons were made to the theoretical predictions presented in Chapter
2. An elaborate photographic technique was cxﬁploycd in order to determine the cross-
sectional shape of the edge cylinders. This experiment revealed a very interesting
phenomenon, the edge cylinder cross-sectional shape oscillates between an elliptical and a
peanut-like shape, and the theoretical predictions are only valid in the limiting case. A third

experimental study was performed on the effects of air drag on a liquid sheet.

1.4 - Introduction to Linear Stability Analysis

The essential problems of hydrodynamic stability were recognized and formulated
in the nineteenth century, notably by Helmholtz, Kelvin, Rayleigh and Reynolds. The
method of normal modes for studying the oscillations and instability of a dynamic system
of particles and rigid bodies was already highly developed. A known solution of Newton's
or Lagrange's equation of motion for the system was perturbed. The equations were
linearized by neglecting products of the pcrturbations. It was further assumed that the
perturbation of each quantity could be resolved into independent components or modes
varying with time t, like est for some constant s, which is in general complex. The values
of s for the modes were calculated from the linearized equatons. If the real part of s was
found to be positive for any mode, the system was deemed unstable because a general
initial small perturbation of the system would grow exponentially in time.

Stokes, Kelvin, and Rayleigh adapted this method of normal modes to fluid

dynamics. The essential mathematical difference between fluid and particle dynamics is
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that the equations of motion are partial rather than ordinary differential equatons. This
difference leads to many mathematical difficulties in hydrodynamic stability, which have

been overcome for only a few classes of flow with very simple configuratons.
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Chapter 2

Theoretical Formulation

The focus of this chapter is to analytica.ﬂy determine the sheet length over slit width
ratio and the cross-sectional shape of the edge cylinders. A better understanding of the
problem at hand can be realized by referring to Figure 2-1, where the front and cross-
sectional views of the liquid sheet are shown schematically. The sheet is formed by forcing
the working fluid through a very thin slit, of length Wy and thickness 7. The sheet is then
pulled together by surface tension until ﬁhc sheet coalesces at a length L. An orthogonal-
cartesian coordinate system centered at the top of the sheet in the middle of the slit is
adopted. The z-axis points in the vertical down direction, the x-axis points to the right
along the slit, and the y-axis goes in the direction of the thickness‘ of the sheet. The
velocity convention that u, v, and w denote the x, y, and z components of velocity,
respectively, will be used throughout the chapter. Moreover, s(x,z) represents the function
that will describe the cross-sectional shape of the edge cylinders. Using the above
mentioned notation, the two objectives of this chapter are to determine L/W and s(x,z).

In the following section the effects of gravity and surface tension on the sheet will
be considered. First, the forces acting on the edge cylinder will be considered, resulting in
an expression for the velocity of the edge in the x-direction. Second, a macroscopic mass
balance on the entre sheet will be undertaken to determine the sheet length over slit width
ratio. Third, the sheet length over slit width ratio will be found by neglecting gravity and
compared to the ratio that included the effects of gravity. This analysis will result in

showing that the surface tension is the dominating force in the sheet and that the

gravitational force may be neglected.
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In the second section the only force acting on the sheet will be the surface tension
force. Here, the equations of continuity and motion will be solved to obtain the cross-

sectional shape of the edge cylinders. A number of assumptions will be made resulting in
the motion equation just being a balance of inertial forces and surface tension forces. The

objective is to develop a method for predicting the shape of the edge cylinder from knowing

W
the area of the edge cylinder. This area, in turn, can be found from the results of the first
section.
e —
R 3 —> x
f':\‘ " w
113 y
4 v
s(x,z)
7 u
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Front View Cross-Sectional View

Figure 2-1 Schematic of Thin Sheet Flow
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2.1 - Derivation of the Sheet Length over Slit Width Ratio

2.1.1 - Development of the Governing Equations

Consider an arbitrary element of the edge cylinder with a thickness of dz, as shown

in Figure 2-2. Let this element be considered a control volume. Assume it to be at pseudo-

steady state, that is, it will be considered steady when conservation of momentum is
applied and unsteady when conservadon of mass is applied. Furthermore assume it to be
unaffected by gravity. Assuming a zero slope at the point where the cylinder connects to
the sheet, the surface tension force berween the cylinder and the sheet is odz for both the

front and the back of the sheet, therefore:

dF, =2cdz

i ?)

PL o Ed =
< L.
A ..'!t :
[ A7
ids
[

Figure 2-2 Differendal Element of the Edge Cylinder
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Let u, be equal to the velocity af which fluid enters the control volume at the right

edge. Applyinga macroscopic momentum balance on this control volume yields:

dF = puitdz

Therefore:

dz
w5t o

If A, is defined as the area in the xy plane of the control volume, then applying a

macroscopic mass balance on the control volume yields:

_d- = T
& (pAdz) = pu.tdz

dAs _ pu, =, /29T
&= (2-2)

If the principle of conservation of mass is applied to the entire sheet (see Figure 2-

Therefore:

1) then it can be shown that:

W pwotVoto = pw(2A. + W)

;:’5 Since the fluid is incompressitle and assuming Tw = TgWp, the above equation can be
L

% written as:

woWazo = 2wA. + woToW (2-3)

Slm thc Chaﬂngm“ (‘ d!c Sh: :[11 is [ :: tl : :dgs 'CIOCity itm& m

g ﬁ = -2ue =-
% " Pt (2-4)

% Itis known that the accelergoa in i s~direction is due to gravity or:
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dir  dt (2-5)
Integrating, knowing thatatt = 0; dz/dt = wg, gives:
dz_w=
A (2-6)
Taking equation (2-3) and differendating with respect to time yields:
=2 .E—"AC_. + 2 dﬂ dVV
0 ar w + 2A, R + Tgwg —— dt
Differentating again yields:
d?A. dAc dw d w 4w
0=2—= 4 = acw,
2 W+ T dt + 2A, B2 + Tgwp 2
2y _dg _
2 dr 0
0= ZdACw~r—4dA"d—*{»towoCLW
;39’ : di? de? 2-7)
#;LTC Differentiating equations (2-2) and (2-4) with respect to time cwcs
d?A. _ /G dt
di2 2pt dt (2-8)
W _ [20 dz
de? p'c3 dt (2-9)
) Subsntuung equations (2-2), (2-5), (2-6), (2-8), and (2-9) into equation (2-7) yields:
0=2,/-0 (g +4ﬁ +1 29 do
A , 2pt dt (gt + wo) p g7 To%o P13 dt
lvmg this for dt/dt gives:
dr _ -41:2g
dt (gt +wo)+ Towp (2-10)
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From this expression it is apparent that if g = O the thickness is constant, as would be the

case in space application. But, since g is greater than 0, dvdt is less than 0 and the sheet

becomes thinner.

Introduce the following dimensionless variables:

| » Wo Wo Wo wo (2-11)
x : , Rewriting equation (2-10) in terms of the new dimensionless variables vields:
B /% s
dt w3 . w} [tgWot o3
Wog Wog| w3
s Or, in terms of the Froude number, defined as the rato of inerdal forces to gravitational
CTE forces:
§ Fr= W%
.;.~ gWo (2-12)
; 3*’ One obtains:
gt p =2
£ dt _ . 4t
%3 : = —
7o dt Fr(1+r(—L+1))
é | Er
- *‘g For the special case of small t /Fr it is permissible to neglect it, giving:
?f dr___ 47?
}:" dt  Fr(l1+7) (2-13)
% Rearranging and integrating results in an equation for T as a function of t
_}?.‘
X _
ﬁ G+t 4afg
=3 2 Fr
£
. T"av - - _1_ - _4_ E +
;5 ?’:y, ln E Fr ¢
3 e ; _
; +4 Using the boundary condition thatat t = 0; T = I it can be seen that ¢ = -1 and:
"
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de wipTot

Incorporating the Weber number, defined as the ratio of inertial forces to surface tension

forces,
_ pPW3To
We=—3 2-15)
k one obtains. .
s aw _ |
i dt Wet (2-16)
. g

If equation (2-13) is divided by equation (2-16) an expression for dt/dW can be

obtained.
G AT
dtdw . —Fr(l+7
Werz ( _)
di=ﬁWé'€5’2
dW Fr(l +1)
This can be integrated to find W(t)

(1L+7)dt _yowe [ 4w
5 Fr

2732 g7 2V W 4 ¢
3 Fr

W EL (c.2792.57 )

Using the boundary condition that at W = 1; T = 1, it is found that:
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Integration yields (i):

equation (2-14) to find t. Finally, the value for t can be plu

2We +&-2?'m-2?'m)
3 3

W=1-E04/2 (37, 3712 _y)

We

dz _8Wo;
dt w%

dz _ t.

& Er +1

1 32,73

=—t+t+

2Fr

Applymg the boundary condition, att=0; z = 0, results in ¢ = 0, therefore:

=L 2+t

2Fr 2-1%)

In order to find the sheet length over slit width ratio, L/Wy, equation (2-17) should
solved for T numerically when W = 0, This value for T can then be plugged into

gged into equation (2 -18) to

nd Z. The resulting value for 7 is the sheet length over slit width ratio for the given flow

The value for /W can be determined much more casily and without the aid of th=

COmputcr if gravity is neglected, as is the case in space apphczmon As was shown before,

e Uleth

.
. ol Lase e,
voa L /&’ AL RRL PV WSSt 7. AU
- as

(2-17)
Writing equation (2-6) in terms of the dimensionless variables introduced earlier,
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if g = 0 then dv/dt = 0, and consequently T = 1 throughout the sheet. Thereby equaton (2-

16) can be written as:
dw _ .
dt We

This can be integrated to find W as a functon of t:
J’ dw = -V.W—,ef dt

W=- Wet+c

From the boundary condition, t = 0; W = 1, it can be seen that ¢ = 1 and:

W_’—"VW—,CI“FI

Now, W can be set equal to zero to solve for t, giving:

as:

Therefore:
2=V (2-19)

1/ We
Therefore, the L/W); ratio in zero gravity, is simply equalto ¥ 8 .

2.1.2 - Computer Solution

The Fortran program FLUDYN has been written to compute the L/W ratios fer a
typical range of Froude and Weber numbers. This program computes the L/Wy ratios both

including the effect of gravity and neglecting it. The results of this program have shown a

eme
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negligible difference (<0.1%%) in the calculated L/W ratios if gravity effects are considered.
For this reason, the rest of the calculation for the cylinder cross-sectonal shape shall be
done by neglecting the force of gravity.

The text of FLUDYN can be found in Appendix B. Figure 2-3 shows how W and
T vary with Z for a Weber number of 20. This shows how the sheet becomes thinner on the
way down and how it keeps a basically triangular shape under the influence of gravity.
The choice of Weber number egual to 20 was to show the sheet thinning, as the Weber
number gets higher this effect becomes less and less. Figure 2-4 shows the sheet length
over slit width ratios versus the Weber number. These were calculated without the effect of

gravity. Those values that were calculated with the effect of gravity could have been

plotted but the difference would not have been noticeable.
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Figure 2-3 Sheet Width and Thickness vs. Vertcal Position for We =20.0
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Figure 2-4 Sheet Length/Sheet Width Ratio vs. Weber Number

2.2 - Derivation of the Edge Cylinder Cross-Sectional Shape

. > The full equations of continuity and motion, including the surface tension pressure,
!r are as follows (see Appendix A):
v Continuity:
t ap
Y ==-\V-p V)
, ot ( (2-20)
ﬁj, Motion:
! d
: =-V. -V +Psr)-VT +
: Sov=-V.pvy - V(B + Psy)- V-5 + pg .
f Several assumptions need to be made to simplify these equations.
‘ 1) The flow is steady state;
. 2) The fluid is incompressible;
’ 3) Gravity is neglected;
b
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4) The fluid is inviscid;

5) Air pressure gradient is neglected;
6) The flow is irrotational;

As a consequence of these assumptionas,
'a% -

p = constant

2pv=0

g=1t=0
VP, =0
Vxv=0
and the governing equations reduce to,
Continuity:

V.v=0

Motion:

VPsTt =0

V-vy +

Through the use of vector identities, the equation of continuity, and the irrotationality

assumption, the first term in the equation of motion can be simplified.

Vivww =v- Vv +§(V~v)=v-Vv =%V(v-v)-vx(va):-;—V(v-v)=%—Vv2

Therefore,
Continuity:
Vov=0 (2-22)
Modon:
lyyz 4 VPsT ‘= 0
2 P (2-23)
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2.2.1 - Integral Formulation of the Continuity Equation

Consider Figure 2-5 showing a typical cross-secdonal shape and the coordinate

system to be used. The function s(x,z) describes the cross-secticnal shape. The functon

r(z) is essendally the width of the edge shape, and is defined as the point where s = 12

and u = -u,.
y

i

s (x,2)
‘CQ/.?.
g4
< .
> x
A
a3 r(z) >’
Figure 2-5 Typical Edge Cylinder Cross-Sectional Shape
Expanding the continuity equation for this control volume yields:
ax ay (2_24)
Integrating equation (2-24) from O to s over y gives:
“Bu 2
u  ov
—+=—]dy=0
f dx o )
or:

'xﬂ‘ .



]

21

[ aax (udv)+4£ %(vdy)——-o

The second integral in equation (2-25) may be directly integrated. Knowing thatvaty =0

(2-25)

is equal to 0 due to the symmetry of the sheet,

f aay (vdy) = Vs.sVy=0=Vs
(2-26)

The first integral in equation (2-25) may be evaluated through the use of Leibnitz's rule.
o [° ds ) )
jo udy -(us-é;- uyzoa—x(O))—-a-;

i) 1 ds
fax(udy) =5 s ?fo udy)-uséz

If (u) is defined as the average x-component of velocity overy, then:

S
{©)= -_3‘—[ udy
0 (2-27)
and,

Y3, .. ds
fo 2 (udy) = sf) - us 2

Substituting the integrals in equations (2-26) and (2-28) into the integrated continnity

(2-28)

equation, equation (2-25), gives:
u)-u =0

Since s = s(x,z) it may be written that:
422 (a2 (%)
dt ox\dt/ 9z

It can be seen that for this case:
dx _
dt

Ws =W

dz
de




Sy
1

Therefore:

Vs = Ugn—— ="
I (2-30)

or:
ox = (2-31)

If equation (2-31) is integrated from O to x it is fa—===<

< .
d e
[ 5; S(\U)dX = : '—_:.4.
0 . (2-32)

The first integral in equation (2-32) may be direc~==szed, knowing that at x = 0;
{u) =s=0. Therefore:

[ 2 st = st -t
(2-33)

The second integral in equation (2-32) may be evaz===mough the use of Liebnitz's rule.

f—dx -d-f sdx - sx ) -d-f sdx
0 (2-34)

If equations (2-33) and (2-34) are substituted back @=zmion (2-32) it yields:

“ (2-35)
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then:
A=2] sdx

and
= 3p(2)

X

T

Ac=2] sdx

2°Y p1o 2 dz

104/ 28— dz=dA,
' pwito

:
134
. T 1/ Idz =dA.
0 We
‘
Equation (2-39) can be integrated giving:
5
T v Z_ dz=] dA.
0 We f f
. . =1 z+cC
| A o]/ IWc
}
;
¢
“‘ t 'gfm/:"/.t..‘igﬂj “..'.I.il.&... _‘;_:4-“";._;(:-.‘:':;‘ . e .

If A, is equal to the cross-sectional area of the edge cylinder then:

If the equation (2-37) is applied with x = r, refer to Figure 2-5, then:

To
S=5'
(u)z-uf':-/\/%‘[zo
A=A,
Therefore:
T [20 - wodAc

LAY

If A is defined as the cross-sectional area of the sheet fromx =0 tox =x forany z

(2-36)

(2-37)

(2-33)

(2-39)

.. --'-“Jnl’a. Wi



Ae=t \/:x%_ (2-40)

9% 9% 3%
dx2 gz2
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R

B o s 3%
=§2 %_ p [ug + Vg] -5 ox2 9gz2 =-g ax2 az2

.ﬁ : +(aa;)2 (32)F : + — ﬂl stag  (2-41)

‘ﬁ:, Smcc all of the partial derivatives on the right hand side of equation (2-41) are taken at the

"i
0
ttagnauon point, all of them are constant. Therefore the right hand side is equaltoa
,faconsmnt or:
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From the continuity equation it was shown that:

—.Wo(dA
(s =-3 (dz)x (2-37)
This
(2-48; )
(2-49) |

(2-20)

v = -;gu 1s assumed that the cross-sectional shape keeps a similar form for all z, then the
-‘t.!:ﬁnitions for the cross-sectional area of the sheet and the cross-sectional area of the edge

¥
| gl‘mdcrs may be scaled by r, or:

T a=2a] (549

~~'.".VI'

'% 0 (2-51)
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- Three Possible Simplified Solutions

The problem still remains to solve for 1] as a function of § and . It would be
easiest if all the z-dependence were removed. That is, to be able to solve forT as a

i _ ‘funcn'on of & for any given _A_c. The only place where any z-dependence remains in this
= equation is in the 32n/3C” term. Three simplified solutions to this problem will be
 considered. In the first simplified solution, (i), this term will be neglected. In the second
simplified solution, (i), this term will be set equal to a constant. In the third simplified
solution, (iii), this term is set proportional to the other second partial derivative term, that

15,

.. 0%
o
2 2

L ok

Since, cases (i) and (ii) can be regarded as limiting cases of the more general case (iii), the

= (Q = constant

solution for this case will be considered first.
Taking assumption (iii) and substituting into equation (2-58) yields:

dn & _1_(1) H(en)z_ 7 1+(91)2

This is a second order, non-linear, ordinary, differential equation which may be solved for

v

-

e TR e A I

7 as a function of § forany A;. The boundary conditions on this equation are as follows:

1) at€ =0,n=0and T~
dg

R

d
2 att=f,n=1and D=0
- ) dg

i . ) . BRI ST
.- S a - o . B LI Wep-Ay 5/ V-1 &7 SO AU



29

3) atE =7, A=A,

The solution can be found by using a fourth order Runge-Kutta technique. The

algorithm uses what can be thought of as a shooting technique. To/Rsag and o are free
variables. Knowing A, To/Rgiag and a are selected. Beginning at § = 0, where 1 =0, the
algorithm calculates 1] at AZ and from that calculates 1 at 2A and so on. The program is
allowed to shcot untl 1] passes through a minimum. This point is Z. This insures a zer
slope where the edge cylinder connects to the sheet. Thus the first part of boundary
condidon | ard the second part of boundary conditon 2 will always be satisfied. The next

step in the routine is to insure that the proper 1y/Ry,, and o were selected.

First, the value of ) at € =T is checked to see if it is equal to 1. Ifitis not, the
value for a is changed and the algorithm is started again. This continues until the value of
7 atfis equal to 1. Second, the value of A at& =T is checked to see if it is equal to A, If
it is not, the value for To/Rgiag is changed and the algorithm is started over again. This
most often results in ¢ being changed again, but eventually both conditions are satisfied.
This satisfies the first part of boundary condition 2 and boundary condition 3.

Due to the second part of boundary condition 1, the second point, 1(Ag), must be

found by an analytic approximation. For small &, A is approximately equal to zero, and

equation (2-59) reduces to:

23

: of o[

g d’n _ dé
B 2 2Ry (l +a)
§ “ o
:: ' The solution to this equation is:

} n=(,[4(1+a)ng_§Jﬁ )

10 (2-51)
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(2(1 + ) Ryrag =
ng = i) K
d3 " (2623

The Fortran program SHAPE has been written to solve equatien (2-59) using these

boundary conditons and the approximadons for small §. The listing of this program can
be found in Appendix B. The results of running the SHAPE program for a number of
Kc’s are shown graphically in Figure 2-6. Figuge 2-7 shows that there are only specific
values of & and Tp/Rypg that can exist for any given A.. These two quantides quickly
diverge as A, approaches 0. For this reason, results for A.'s less then 40 were unable to
be obtained. One interesting note is that if assumpton (i) had been used it would have been
equivalent to setting o equal to 0 in this solution. As can be seen from this graph, the only
A at which the boundary conditions could be satisfied had this term besn neglected is
approximately 454. For this reason it is épparent that assumption (i) would have been
invalid. Figure 2-8 shows how the quantities N;5¢ and T vary with A.. TMmax is the largest
value 7 reaches in the cross-sectional shape and represents half of the maximum thickness

of the cylinder. Figure 2-9 shows the ellipticity of the end cylinder. This is particularly

30.0 -
= 250 3
(59 < 20.0 - :
= ] ?
150 3 : \
-y SOV
’ i, g 5.0 —} ———-Joa , NI A
| § A N 3 Acg.-soi‘\_ \ ” \_\\.\K\\.\\\
00 100 | 200 300 = 400 500 600

Dimensionless Horizontal Position, &

Figure 2-6 Cross-Sectional Shape of the Edge Cylinder for Case (iii)
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Figure 2-7 1¢/Rgg and @ vs. Dimensionless Cross-Sectional Area for Case (iii)
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-d__l=lL(_K_ 1+ d_n.z -_.E_ 1+ g‘lzg-Q
272|2 (A, R
dg n dg g dg C-63)

< This equation is solved similarly to the previous one. The method is the same and the

-

‘EO’Rsmg and Q. The second point 1(AE) still has to be found using an analytic

; approximation. If A and Q are set equal to zero in equation (2-63) it yields:

4
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d"
st 2]
dE’" ~Rst:g dé

(2-84)
The solution to this equation is:
. [4Rscag JQ—
n= H ™ (2-65)
and
2R;0ag )
dn . (_fg__é_
c§ n (2-65)
The Forzan program SHAPE? has been written to solve equation (2-63) with the
j 40.0
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Figure 2-10 Cross-Sectional Shape of the Edge Cylinder for Case (ii)
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same boundary conditions as before and these approximations for small &. The listing of
this program is also appended. Figure 2-10 shows the results of SHAPE?2 when it was ran
for a number of A's. Figure 2-11 shows there is only one specific T¢/Rgag and Q for any
given A.. This is also in agreement with the previous solution in that if assumption (i) was
used the only value of A, where the boundary conditions could have been satsfied was
454. Figure 2-12 shows how T, and T vary.with A.. This is quite peculiar where it
shows that for A's less then 497 a decrease in area actually produces an increase inf. This
is definitely not to be expected. The computer solution became quite unstable for small
values of A, for this reason, no values were obtained for A.s less then 400. Figure 2-13

shows the ellipdcity using assumpdon (ii). This is quite unexpected, for Kc's greater
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Figure 2-13 Ellipticity vs. Dimensionless Cross-Sectional Area for Case (ii)

then 497 the cylinder becomes thicker than it is wide. This is very apparent in Figure 2-10

where the curve corresponding to an A of 497 is dashed and the curves below it have a
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A== A
(2-56)

A= TOZ\/% (2-40)
= -Z\/T (2-67)

S po

L W _
% Wo 8 . (2-19)
:Substmmng equation (2-19) into equation (2-67) gives:

-\

by

w#‘a#

x - Woz
A=l (2-63)

e

g.

Vith this expression, all that has to be known is the dimensions of the slit, the length of the
shcct, and how far down the sheet the shape is desired to be known to calculate A.. Once

1.I

'lhxs is known, the program SHAPE is ran and the output describes the theoretical cross-

: 4‘
ﬂlec‘ggnnl shape.
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Chapter 3
Stability Analysis

-
-

The focus of this chapter is to analytcally predict the stability of a non-planer, thin

liquid sheez. It has already been shown by Geoffrey Taylor [1] that a perfectly planer
liquid shee: is completely stable. It has also been shown by Rayleigh [4] that a cylindrical
jetis unstable to an asymmetric disturbance. Unlike Taylor's work, the sheet in this study
is not perfectly planer and does not have a zero velocity throughout in the transverse
direction. The sheet has curvarure, pardcularly in the edge cylinders and also in the shest
itself due to slit defects. With this in mind, this particular analysis may be considered a
combination of Taylor's and Rayleigh's work.
By neglecting gravity the velocity field to be considered is the following:

V = u(x.y,z), v(X.y.2), Wo
Without loss of generality a Galilean transformation may be made to reduce the z-directon
velocity to rest, leaving:

V =ux,y,1), vix,y,t); w=0
Assuming an incompressible fluid, the condnuity equatdon may be written for this flow

field as:
du dv

a‘;'f'-a—;:()

f Assuming irrotational flow, it may be written that:

U

TR e o

Y

KAy

S
Q
=

¢

Introducing a velocity potential to satisfy the irrotational assumption,

ces
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ox’ dy (3-1)

and subsdtuting it into the contnuity equation vields the two-dimensional Laplace equadon.

azq; PR =0
dx? av2 3-2)

The first boundary condition that the flow field must satisfy is the kinematic
condition: that the fluid particle's y-direction velocity must be equal to the motion of the

free surface, or mathematically since s = s(x,1t):

dt dt/;
but,
ds oy |92
dr v (aY)s
dx) oy =%
(dt)s o (ax)s
therefore:
(a_'b_) as ds (8¢)
oy)s ot T ax \ox s (3-3)

The second boundary condition is obtained by applying the unsteady Bernoulli

equation including surface tension.

3
%) L{y2 4+ v2).0___ 9x2 =
(at A +§-(U5 + VS)-p —W—consmt
[+(5)
ox
Substituting for ug and vy gives:
Vo 2 2 &
w5 Bl
(3?)3 *3 (ax ] + L o (1 as))J = constant
dx (3-4)
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¢ = ¢0(X’Y) + AQ(X,}',I) (3_5)
s = so(x) + As(x,) (3-6)

Ch (oo + Ao) +—ai(¢0 + AO) =0
ax? dy?

0209 0°A0 9% 9%Ad
+ + +
ox2  9x* oy? 9dy?

=0

et gy

.Ranovm g the termms that are identically zero by equaton (3-2) leaves:

2 2
3240 3¢ _

it 3 9y? " (-7

‘1 Equations (3-5) and (3-6) may also be substituted into the boundary conditions.

‘o q&kummg equations (3-5) and (3-6) into equation (3-3) yields the following.

3 9 (69 +A0) = (s +85)+ 2 (so + As) 2 (60 + A0)

s ¥ Jy ° Ix ox ’

4. ay

- o

£ aﬁ) (aAq,) 3so , 3As +[aso 30| , aas aqx,) , 850 (aAq)) , 94s (aAqs”
dy ay ot ot ox \ox )y ox \dx /s ox\dx Js ox|ox

"'E terms that are identcally zero by equation (3-3) can be removed from the above
jénauon. By the assumption that A¢ and As are small, the last term in the above eqt.anon

ﬂ.*‘.y be neglected, thus resulting in a linear equation in A9 and As.

BRI A0
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A9 = y)eilix - o) (10
As = Seilix - ) .

where @ is the frequency and k is given by the following relation:

k=3%
A (3-12)
ﬁ/hcm A is the wavelength. These wavelike forms may be substituted into the disturbance

equation, equation (3-7), and into the boundary condidons, equations (3-8) and (3-9). The

These wavelike forms can be substtuted into equation (3-7), yielding:

2t 2t g

VN _ d2g
Wik Peilix - o) 4 gilix - ot T - 0.
dyz .

2A ~
ﬂ -k =0
dy? (3-13)
'fhc solution to equation (3-13) is as follows:
19'7 ¢ = c;sinh(ky) + cacosh(ky) G-14)

ng‘m ¢1 and ¢; are constants. Therefore, substituting equations (3-14) and (3-10) into

!_'t;;ia;;ioq (3-5) gives:
' ,?A e =g+ (clsihh(ky) + cacosh{ky)leilkx - ot) (3-15)

g Since every wavelike disturbance can be considered as a combination of a

. AN .
ymmetric and an asymmetric wave, these are the only two waves that need to be
e
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considered. In the symmetric case, the y-velocity on the back surface of the sheet is the
opposite of that on the front surface. In the asymmetric case, the v-velocity on the back
surface of the sheet is equal to that on the front. These two cases are shown in Figure 3-1.

The boundary conditions for these two cases are as follows.

1) Symmetric Case
Vs =-Ys
R _ [0
ayls  \dy/s (3-16)

Asymmetric Case

Figure 3-1 Schematic of the Symmetric and Asymmetric Waves
2) Asymmetric Case

'.’"I : .
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-2
dyJs \dyls (3-17)

For case 1, the symmetric case, boundary condition (3-16) can be applied to

equaton (3-15), giving:

o _ )

(—;;0) + (ccosh{ks) + casinh{ks)e{ix - @) = - (—%?/O) - (cicosh{-ks) + casinh(-ks)eilicx - ax)
* -S

The first terrzis on both sides of this equation arc equal from equacion (3-16). Rewntng

using trigonorretric identites gives:

(c1cosh(ks) + casinh(ks))e{kx - @) = - (c,cosh(ks) - csinhks)eilkx - o)

Simplifying yields:
S =-c

Therefore, for the symmetric case, ¢; must be equal to zero. Now if c; is set equal t0 Ay,

the amplitude can be written as:

¢ = Agycosh(ky) ". Symmetric Case (3-18)
For case 2, the asymmetric case, boundary condition (3-17) can be applied to

equation (3-15), yielding:

(%t,g) + (cicosh(ks) + ‘:25“7}’(](8))5("x -ot) = (—aai;g) + (cicosh(-ks) + Czsinh(-ks))ei(kx - w?)

According to boundary condition (3-17) the first term on both sides of this equation are

equal. Rewriting with the use of trigonometric identities gives:

(c1cosh{ks) + csinh(ks))eilkx - @) = (c;cosh(ks) - cosinh(ks))eilkx - ex)

Simplifying gives:
C2=-C;
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Therefore, for the asymmetric case, ¢, must be equal to zero and if ¢ is set equal to Am,

yields:
¢ = Asgysinh(ky) Asymmetric Case (3-19)

' ’%" The wavelike forms may also be applied to the boundary conditons. If equations
;‘ (3-10) and (3-11) are applied to equatdon (3-8) it gives:
‘ eilix - ox) (23.) = Seilix - o) @) + Seiliax - @t)ik) (a¢°) %..q; i(1x - wx)ik)
oy s
IR
gx Dividing out the exponentials and multiplying by i gives:
% ': {ég) =50 - k(a¢°) 950 5k
£y ays ox /s ox (3-20)
If equations (3-10) and (3-11) are applied to equation (3-9) it yields:
~ . L dbo | {09 Seilix - )ik 2
- Hix - ox)_; gvo {xx - wt); 0)( ) {x-o) G2 ™ o
.l:' ¢se x 1(0) + ( 9% )sq)se xlk) ( ay ay ) ( aSO )J
e
8 dax
i g Simplifying yields:
e " 9% 9% (3‘3) c_ §k2 -
ax (3-21)

Simultaneously substituting equation (3-18), for the symmetric case, into both
boundary conditions, equations (3-20) and (3-21), at y equal to sq yields:

5
i p)
Y . . ~ ~ SO
3 =35 - - == h(k
g} ikAsysinh{kso) = sw - u, gsk ( ™ JkA,,cos (kso) (3.22)
P and -
kSO) + Q.._..__..Sli.....___.

’
e
o
i
E ",
.
WS
i
*
‘r'
E
)

- 1A, cosh(ksg) + ikus 0Asycosh(kso) + kvs,0A gysinh( 5 3 ‘.-}3,2
1+
( x| (23

Solving equation (3-22) for S and substituting into equation (3-23) yields:
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®=0-kuo=0

851 2372
"=pll +]28 =
or=ofi+ (5] =
Therefore, equatons (3-26) and (3-29) reduce to:
Symmemic Case  (3-30)
@ - Ko coth(}—gl) =0
P 2 Asymmetric Case  (3-31)

These two equations clearly have two real roots each. Therefore, this analysis predicts
complete stability for any disturbance in the flat area of the sheet. This is in agreement with

the work done by Taylor. It is possible in this case to solve these equations for  and

consequently predict the phase velocity for each case.

Solving equations (3-30) and (3-31) for w yields:

Ko mh(kl :
p 2 Symmetric Case  (3-32)

&

|
=1/ K9 confis
¥ 5 @ P COth( 21) Asymmetric Case  (3-33)

Thus, the wave velocides can be calculated as:

&
3
¥ Coy = Q= /KT KT
z YTk Vo 2
:

cuy=flf-= o o3

where Cgy and ¢,y are the symmetric and asymmetric wave velocities, respectively. Tuking

& the limit as T goes to zero results in:

C e emeslamed e la e s
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—_,/E’ ki /for-2nz 20 = B 3-34)
Csy p 2 K 2p a2V pT N (3-3
= /ko 2 _ [0 = 3-35)
Casy p kt pT e -3

e wavelength. The velocity of

the edge velocity-

The velocity of the symmetrical waves is stll a functon of th

the asymmetrical waves is independent of the wavelength and cquil t0 ‘
[n a sheet mOvVINg

Thus the asymmetrical waves are propagated without any dispersio™
astant phase are at

with velocity wy the asymmetric waves will appear at rest if lines of €@

an angle ¥'to the direction of flow, provided:

siny’ = E/u% (3-38)
But if the angle the sheet edge makes with the z-direction is Y ther:
-37

. tan y == (3-37)

& ) . T o
j Thus, for a long sheet, high wy, these two relations can be sxmphﬁc" ‘

ks wo
& and
& =t
o | . ( edge.
. Therefore, for a long sheet the asymmetric waves are parallel to the e
¥ _ , , 4y 4 the disturbance.
velocity of the symmetric waves is still a function of the waveleng®?

Therefore the symmetrical waves appear as a set of parabolas on £ et
$p3 FigUIC 3-2 waves al

Figures 3-2 and 3-3 show actual photographs of the sheet. ihe
: ative of L
clearly visible that are parallel to the edges of the sheet. These are re N

. vp‘d waves
asymmetric waves. In Figure 3-3, there is clearly a set of parabolic Wa
. V ” g4 Wﬁ‘/‘:#a
emanating from a single point. These are representative of the sy oY

A‘i”df’_ﬁ.—’ ,;;“411'--\‘ o
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Substituting equation (3-38) into equatons (3-26) and (3-29) results in:

(co'): + iku aSotzmh(k o)’ +——( 950 _ tanh(kso))
Symmewic Cass G-=.

(w)h'*'lkusoa—-COth(ks o’ + £ i—2 - coth(ksg)| =
0 ‘p’g(ax 0)

Rewriting equations (3-39) and (3-40) in tcnn§ of the following variables

Asymmeric Case -2

X=ksg, Y=, 5= g
s,0 puoso -

results in:

Y2+ anOanh(X)Y +7X° (1850 - mnh(X)) =0
d Symmemic Case =T

SLP . Aacitey,

050
Y2 + 950X cotn(X)Y + X-( - o x’
la XY+ Ia i) Asymmedic Case (C—=3)

Taking the limit of equation (3-42) as X, the thickness, goes to zero results i

Y2+ 1aaSOX2Y + 7x’(xaso ): 0

or,

Y2=0 Symmetric Case  (3~%%)
Taking the limit of equation (3-43) as X goes to zero results in:

.dsp X .ds )
24204 £/
Y +1ax XY+7X (lax X 0

Asymmetric Case  (3-45)

:.&0‘.'41;-.-..-’_3.‘ B .. ‘ . o o ""_;',‘4_
: ar SRR IN - e Nt b - 0 IR
WQMM:}W..‘.:.JA;.LF . RPN, JATa " 74
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quanon (3-45) and (3-41) into equation (3-24) as:
‘ . iugo aSO + ku
S0 ox s.0
making use of equation (3-38) .
iv
w=- SSO'O_'.*' kuS‘o

S0 Asymmetric Case  (3-45)

1gurc 3-2, it can be seen that the cvlinder might be unstable near where it connects to

' fe’r shcer. In this area, s is approaching zero and vy is negative.

vs will be
negative in this

\arca

Y
Y

T

Figure 3-4 Possible Cross-Sectional Shape and Flow Field
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Chapter 4

Description of Experimental Apparatus and Study of Hole Formation

A testrig for producing a liquid sheet of silicon oil in a vacuum at NASA Lewis
Research Center was constructed previous to this study. This facility was constructed to
study the fluid dynamics and emissivity of a thin liquid sheet. This test rig produces a
relatively large liquid sheet, on the order of ten feet long. The sheet was contained in a
solid steel tank in order to hold a vacuum. The only way of viewing the sheet was (o either
look through small windows at the top of the tank or lcok at the videos produced Ey a srmall
camera with the ability to move up and down and around inside the tank, either way only a
small porton of the sheet was visible at any one time.

Thre sheets formed in this rig appeared to be unstable. That is, when the sheet was
observed it would appear to flicker. The sheet also would splartter near the bottom, making
it virtually impossible to place a probe near the bottom of the sheet to take any temperature
measurements to determine the emissivity. An investigation was undertaken in order to
determine the source of this instability. High speed film loops were taken of the shest.
Observation of these high speed film loops revealed that holes formed in the sheet and that
they grew as they went down the sheet.

In order to further investigate the formation of these holes and to study liquid sheet
flows, three small scale test rigs were made. The sheets in these test rigs were formed with

water, in air, and under the influence of gravity. The main advantage the these test rigs

was that the entire sheet was visible at all times.
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4.1 - Operation of the Small Scale Test Rigs

i A schematic of the general design of the small scale test rigs is shown in Figure 4-
?I_' 1. The test rigs basically consist of a plenum or tank with a small slitin the bottom. When
33 the tank is pressurized with water, the water is forced through the slit and the sheet forms.

‘ ‘ Air Escape and Water Overflow

% — Valve B
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Water In

Valve A

Filter
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Figure 4-1 Schematic of the Small Scale Test Rig
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The water from the sheet is then collected in a bucket or water collector which is equipred
with a drain.

Tap water flows into the system through Valve A. Valve A is used to control the
mass flow rate through the system and the pressure in the plenum. After the water flows

through Valve A, the water is ran through a filter rated to remove any particulates larger

than 10 pm. During the time the plenum is filling up with water, Valve Cis shut and
Valves B and D are open. Valve B allows for air to escape from the plenum during the fill-
up time. Once the tank is full, water flows out through Valve B. At this time, Valve B is
closed and the plenum begins to pressurize and a liquid sheet begins to form. The water
from the overflow and the liquid sheet is collected in the water collector. Valve D is almost
always leZt open, when it is closed water collects in the bucket and mass flow rate
measurez=ents can be obtained. When the testng is over, Valve A is closed and Valves B

and C are opened to allow for water to drain out of the tank and air to enter the tank.

4.2 - Differences in the Three Small Scale Test Rigs

The differences in the three test rigs are due to the size of the plenums and the sizz
of the slits that they run with. In the first test rig, the volume of the plenum was 66 in.
The slits all had widths of 1.345 in. and thicknesses of either 0.0021 in., 0.0032 in., or
0.0040 in. The second test rig used the same three slits as the first, but the volume of its
plenum was 1,500 in3. The third test rig had the unique feature of an adjustable thickness
on the slit. The slits on this test rig were 8 in. long and the thicknesses were adjustable
from 0.0200 in. to 0.0015 in. Also, an impediment could be placed in the slit in order to
form sheets less than 8 in. wide. The volume on this plenum was 3,910 in’.

Figure 4-2 is a photograph of the third small scale test rig, showing the larze
plenum and the sheet at the base of the plenum. Figure 4-3 shows a close-up phctograph

of the adjustable slit from the third test rig. The slit is 8 in. long and the positioner has a
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Figure 4-2 Photograzh of the Third Small Scale Test Rig
digital readout, capable of showing the thickness of the slit to accuracy of 0.00005 in.
Since it was nececsary to produce both sides of the slit 8 in. long, parallel, and :o the
Zre was a great amount of ume sgentin e

highest possible << uree of precision thare

machining of this zlit.
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Figure 43 Photograph of the Adjustatle Slit

4.3 - Experimental Procedure for Determining the Surface Area Lost Cue

to Hole Formation

The first test rig, equipred with the 0.0032 in. thick slit, was used for determining
the surface area lost due to hole formation. The photographic technique employed for
determining the surface area lost due to hole formation is shown in Figure 4-4. A camerz
was set up directly in front of the sheet and a strobe light was set up off center behind the
sheet, the cdashed line represents the line of sight of the camera. The strobe was placed off
center so the area directly behind the sheet would not be flooded with light. The camzra
used was a Pentax KX and the film was Kodak TMAX400. The shutter speed on the
camera was set to 1/60 of a second and the strobe was set to 18,000 flashes per minute.
This resulted in there being 5 images of the sheet on each frame of film. Therefore, iz v/as
possible to see an image of a hole near the top of the sheet and see four consecutive images

of the same hole further down the sheet all on one photograph. Figure 4-5 shows 1 typical

-va
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Figure 4-4 Top View of the Expcrimcntzﬂ Setup for Hole Formation
one of these photographs, showing an image of a hole near the top of the sheet and three

more consecutive images of the same hole as it goes through the sheet.
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Figure 4-5 Photograph of a Sheet Experiencing Hole Formadon
Slides ‘»ers made of each of these photograpns. These slides were then projected
on to 1 digitiznz pad. The outlines of the sheet and the holes were then digitized and the
areas of the shest and the holes wers computed using the Autocad’™ software package.
From these areas the percent of surface area lost could be calculated. This was done fér a2

number of she=t lengths and operating pressures. The results are shown in Figure 4-6.
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Figure 4-6 clearly shows the random appearance of holes in the sheet. Even though

there was a general increase in surface area lost as the pressure was increased, there also

1.50

1.00

o

W

(e}
H

Percent of Surface Area Lost, %

0.00 +——————————
0.0 4.0 8.0 12.0 16.0 20.0

Line Pressure, PSI

Figure 4-6 Surface Area Lost vs. Line Pressure for the First Test Rig, T = 0.0032 in.
were distinct exceptions to this rule. This led to the hypothesis that the cause of the Loles
was not directly linked to the fluid dynamics of the sheet flow alone. In addition, the holes
never exhibited any pattern for where they appeared. Holes appeared on the left, right, and
center of the sheet. Due to the apparent random nature of their occurrence, it was suspzcted
that upstream disturbances might be the cause of the holes.

For this reason, the second test rig was constructed. With such a large plerum it
was assured that the water above the slit would be nearly stagnant and the pressurs
fluctuations would be greatly minimized. When photographs were taken of the siieet with

the new plenum attached it was revealed that no holes were ever formed for all the
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conditions tested.

Thus it was concluded that upstream fluctuations were the cause of the hole
formation. This findin g necessitated the construction of a new plenum for the test rig at
NASA Lewis. Since the test rig at NASA was undergoing renovations the experiments
performed on the liquid sheet and the data presented in the following chapters were

generated by the second and third small scale test rigs.
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Chapter 5

Experimental Investigation of Liguid Sheet Flow

-

Three interesting experimental studies were conducted on liquid sheet flows. In ¢
first, the sheet length over slit width ratio was determined for a number of slit sizes and e:
velocities. The results from this could be compared to length over width values calcuizza:
in Chapter 2, Section 1. In the second study, the widths and thicknesses of the edge
cylincers were measured and compared to the computer generated results of Chapter 2,

Section 2. In the third study the effects of air resistance on the sheet was studied.

5.1 - Determining the Sheet Length Over Slit Width Ratio

The second test rig, equipped with the 0.0021 in. and 0.0032 in. slits, was used -
calculating the sheet length over slit width rato. Since the water collector on the test rig
was set up with a valve on the drain the only equipment necessary for the calculation of th:
sheet length over the slit width rado was a millimeter scale. The water collector was
graduated with two lines. The volume of water between the two lines was equal to five
liters. When, a steady sheet was produced, Valve D (see Figure 4-1) on the water collec:cr
was closed. Once the water reached the first line on the inside of the water collector a
stopwatch was started. While the bucket was filling up, the length of the sheet was
measured with the millimeter scale. When the height of the water reached the second lir=,
the stopwatch was turned off. Knowing the amount of water collected and the time it tcok

to collect it, the volumetric flow rate could be calculated. Thus, the sheet length over siit

width ratio could be determined for various flow rates.
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5.2 - Determining the Edge Cylinder Cross-Sectional Shape

5.2.1 - Description of Experimental Setup

The photographic technique employed is shown in Figure 5-1. The dashed line

et S M e BT e

represents the line of sight of the camera. A beam splitter and two front faced mirrors were
used in order to view both the front and side views of the sheet on the same photograph.

The tip of a wire was placed near the sheet edge in order to insure that both images on the

[
- photograph were at the same point on the cylinder. Due to the sheet going away from the
= camera in the side view, there was only one place in this view that was in focus. Asa

result, the camera was set on the wipod with the ability to move forward and back.

Realizing that if the focus on the camera is not adjusted, then any place that is in focus will
have the same degree of magnification as any other place that is in focus. It was thea
possible to take a picture of the front view in focus, tape the lens to insure a constant focal

length, and move the camera forwards and back in order to get a number of points along

the edge view of the sheet in focus.
Edge Cylinder and Sheet

Mimr/ ------------- C——=

L I T,
-, e me.---

Beam Splitter

I

Camera

Figure 5-1 Top View of the Photographic Technique for the Edge Cylinders
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The camera used was a Nikon F4 equipped with a fully extended bellows and a

200mm Nikon lens, with a +2 diapter close-up lens. Kodak TMAX 400 black and white
film was used. The second test rig, equipped with the 0.6021 in,, 0.0032 in,, and 0.00+C

in. slits, was used. One set of data was collected for each slit.

5.2.2 - Experimental Procedure

Once a full, steacy liquid sheet was formed, the length of the sheer was measured.
The wire tp was placed rear the edge cylinder, close to the top of the sheet and the distance
from the tip of the wire to the top of the sheet was measured. The camera and mirrors were
placed so the wire would have the same length in each view near the bottom of the frame.
Two pictures were taken showing both views, and the lens was fixed in place (o insure an
equal cegres of magnification for each picture. Two pictures were then taken showing just
the front view for greater clarity. Four or five pictures were taken showing different points

in the edge view in focus. This procedure yielded four or five data points along

approximately one inch of the edge cylinder.

At this point, a picture of a millimeter scale was taken in order to determine the
degres of magnification of the pictures after developing. Then the wire was moved down
allowing the top of the next set of photographs to be at the same point as the bottom of the
previous set. The height of the wire tip was measured again and the next set of pictures
taken. A picture of the millimeter scale was taken after each set of pictures to insure the
degree of magnification was not changing. The length of the sheet was periodically

measured to insure that the length of the sheet was staying constant.

Enlarged photographs were made for taking the T and T,y measurements. Tiiz
pictures of the scale were measured with a millimeter scale to determine the degree of
magnification. Knowing the position of the wire tip, the blown-up photograph of’ the scale

could be used to determine the height of the point that appeared to be in focus in each of the
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edge shots. The cylinder widths and thicknesses were measured to a resolution of a 64th

@ of an inch.

5.3 - Determining the Effects of Air Resistance on the Sheet

‘,',
‘f: The third test rig, with the adjustable slit, was used for these experiments. It was
" apparent that for some of the sheets formed by this test rig air resistance would have a very
significant affect. In cases where the sheet velocity was high and the sheet thickness was
- thin, the sheet would catastroghically destruct and form droplets, see Figure 5-2. An
" attempt was made to determine under what condidons this would happen and to what extent
ﬁ ;, it would happen. The critical length, L-g, is defined as the length from the top of the sheet

to the point where the sheet destructs.
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Figure 5-2 Schematic of a Sheet Experiencing Air Resistance Break-up
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u Once a sheet was formed it was noted if it appeared to destruct due to air resistance

or not. If a sheet was fully in tact, its length, L, and thickness, 7, were recorded. If the
sheet was not fully in tact, its cridcal length, Ly, would be recorded in addition to its
length and thickness. This was done for both 8 and 6 inch wide sheets and a great number

of thicknesses and lengths.
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Chapter 6
Experimental Results

6.1 - Sheet length Over Slit Width Ratio Results

Knowing the volumetric flow rate and the dimensions of the slit, the exit velocity of
the sheet, wy (assumed to be uniform), could be calculated by dividing the flow rate by the
area of the slit. Assuming the density of water to be 1,000kg/m’ and the coefScient of .
surfzce tension to be 0.0728 N/m, [8], the Weber number could be calculated through the
use of equation (2-15). Knowing the dimensions of the slit and the length of the sheet, tha
sheet length over slit width ratio could be calculated. The results for the shest length over
slit width rado are plotted against the Weber number in Figure 6-1. The solid line
represents the analytical prediction given by equation (2-15). The circular data points are

from the 0.0021 in. slit and the square data points are from the 0.0032 in. slit.

6.2 - Edge Cross-Sectional Shape Results

Knowing the dimensions of the slit, the total length of the sheet, and the height ot
which the data points were taken, the dimensionless cross-sectional area of the edge
cylinder, A, could be calculated using equation (2-68). Knowing the degree of
magnification and the dimensions of the slit, Ny, and T could be calculated using eguaticn

(2-46). These data and the theoretical predictions are shown graphically in Figures 6-2

through 6-4.
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Figure 6-1 Sheet length over Slit Width Ratio ¥s. Weber Number

Figures 6-2, 6-3, and 6-4 reveal a very interesting phenomenon. The cylinder
appears to be oscillating. The cylinder will quickly flatten out and then reform in its
basically circular shape. When the cylinder is in its circular shape, the shape is in good
agreement with the theoretical predictions. The details of this cycle are shown in Figures 6-
5 and 6-6. Figure 6-5 shows a cross-section of the cylinder as one moves down in the z-
direction. Figure 6-6 shows the actual photographs of the cylinder.

The cylinder begins in its nearly circular shape, shown in Figure 6-6a. Due to the
high curvature where the cylinder connects to the sheet, the cylinder quickly flattens cut,

shown near the top of Figure 6-6b. This appears in Figure 6-5 as an increase in r und 2
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decrease in np,.. Instead of simply regaining its circular shape, the cylinder goes througi
a rebuilding process where the cylinder has a peanut-like shape. As the area of the cylinc.
increases Mmax incTeases but on the inside of the previous cylinder. This can be seeq best.
third of the way down the edge view of Figure 6-6b, where the inner part of the cylinder
can be seen behind the outer part of the cylinder. It cannot be seen whether the cylinder
necks down between the two parts or not. T}_lis inner part of the cylinder grows and
engulfs the outer part to return to its circular shape. This appears in Figure 6-5 as an

increase in M., and a decrease in F. This is most noticeable in the 0.0040in. slit.
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Figure 6-2 N5, and T vs. Cross-Sectional Area
Theoretical and Experimental for the 0.0021in. Slit
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6.3 - Air Resistance Effects Results

The results for the air resistance effects are shown in Figure 6-7. In Figure 6-7, the
sheet length and thickness have each been scaled by the slit width. The cridcal length has

; been scaled by the sheet length, in essence giving the percentage of the sheet length that is

still in tact. Any combination of Wyt and L/W] that is below or on the Lg/L = 1 line

poger oy

was found to be completely in tact. Any combination above that line was found to be in

varied degrees destroyed due to air resistance. It can clearly be seen thatin order torun a

| f: sheet at a high width to thickness ratio in air one needs to have a shorter sheet.
:
A
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{ i 5.0
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Figure 6-7 Contour Plot for Lcr/L
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i’e Chapter 7

: g Conclusion

: .?3 _s-

- Theoretical and experimental studies of the fluid dynamics and stability of thin

P

g liquid sheet flows have been carried out in this thesis. It was shown that this was a surface
, .§f5 tension csiven flow. Due to the surface tension, the shest coalesces to a point after a length
’ gy L and, due to the conservation of mass, the water collects in the edge cylinders giving the
5 sheet a basically triangular shape. It was shown that gravity had a negligible effect on the

shape of the sheet.

A relation was developed linking the sheet length over slit width ratio to the

¥t

vy operating parameters of the sheet, namely:
Lo =4/ We
Wo 8
where:
2
T
We= dad L
c

Thus the shezt length was found to be proportional to the outlet velocity of the slit. Many
experiments were carried out which demonstrated that this r;:lation correctly represents
what occurs in thin liquid sheet flow.

A computer program was developed to determine the cross-sectional shape of the
edge cylinder given the cross-sectional area of the edge cylinder. Ex;;crimcnts were carried
out revealing that the edge cylinder oscillates and that the computer solution was enly valid
for the limiting case that the edge cylinder was in its basically circular shape.

A stability analysis was performed on a non-planer liquid sheet. This analy<is

N
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showed the existence of two different wave formations on the center, ﬂat portion of the
sheet. Photographic evidence of the existence of these two wave formatons was also
found. It was determined that the sheet may be unstable where the y-direction velocity on
the surface is negative, ses Figure 3-2. It was shown that this is a very likely condition on
the edge cylinder near where it connects to the sheet.

A study was conducted to determine the effects of air resistance on the sheet. It
was shown that the longer the shest i, the thicker it needs to be in order to stay in tact.

As to the formation of holes in the sheet; as found at the NASA Lewis test rig, it

was found that the holes form due to fluctuations in pressure upsream from the slit. When

a large plenum is placed above the slit, hole formation was eliminazed.
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Appendix A
Derivation of the Total Pressure on a Free Curved Fluid Surface
Including Surface Tension

Figure A-1 shows a differendal fluid c.:I;:ment on the surfzce of a fluid body. The
lengths of the rwo sides are ds,x and dsy,. The surface is curved, and the radii of curvature
are shown as Ryy and Ry,. The coeficient of surface tension is o, therefore, the forces
connecting this element to the surrounding elements are odsyx and adsy,. Due to the
curvature of the element these surface tension forces create a forcs normal to the surface.

Cenducting a force balance in the normal direction to the surface results in:
odsyx

dSyx

—

P
Pi f Odsyz

dsyz

dByz
Ryz j

Figure A-1 Differendal Surface Element



Pdsyxdsys = Padsysdsye - 20ds,5in S22 - 20dsysin S22

Applying the small angle approximation:

By dB,q
sin —; >
By, do,,
SImesTE

results in: -0

Pdsyxdsy; = Padsyxdsyz - 20 (dsvz dezv‘ + dsyx dezyZ)
Dividing by dsyxdsy, results in:

e T

Popg (de“ devz)
dsyx  dsy;

" ,; or,

ey p=p-c__1_.+_l_)
s : (Ryx Ryz
7 &
Since the radii of curvature are defined as [9]:

1,1 __ 92 oz
4 g Ryx Ry ( { +(as (QE 2)3/2
'= % ax ) oz
- | the total pressure is equal to: | ‘
* aZS azs
i % oz
i pP=p dx? 0z*
7 & =F-0
r% (1 . as) ;_;_5_)2)3/2
| % ax] oz

Define the surface tension pressure as:
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t*********t#ltﬂt*iiiiitt*tit**iii***itiiﬁtt*tt*ttt'it***t**'***itii'ﬁ*.
: * AUTHOR: MATTHEW S. MCMASTER
g * DATE: 12-5-91
~ *
* TITLE: FLUDYN
N *
E * PURPOSE: DETERMINES SHEET LENGTHS AND THICKNESSES USING THS COMPLETE -
£ * SOLUTICN, INCLUDING GRAVITY, AND COMPARES THEM TO THE NO .
B * GRAVITY SOLUTION »
_r‘ E 3 *
f *  VARIABLE KIY -
‘?7 * x
£ * WE : WEBZR NUMBER .. *
% * FR : FRCUDE NUMBER - *
< * TAUB : TAU-3AR «
. * TIMEB : TIME-3AR ~
3% * Z3 :  2-BaR -
;:’ * ZBNCG : Z-BAR WITH NO GRAVITY «
e * NU : COEFTICIENT IN THE X-BAR EQUATION x
v * *
‘ * ALL OTHER VARIABLES, TAUB'S AND DIF'S, ARE JUST DUMMY VARIABLES *
* IN THE ITERATIVE ROUTINE TO SOLVE FOR TAU-BAR *
**‘kxt*************xx**************t*t*****tttt********t****ttxx***!****a:

***2Y**************x************t**********f*r************x**xt***"**x*w
x

* DICLARE VARIABLEIS
***t!X************txt**************xt**t****!*********t***x**t****ttw**y
REAL WE, XB,DTAUB, TAUB1, TAUB2,DIF1,DIF2, NU, TAUB, TAUBL, TAUBR, TAU2C,
+DIFL,DIFR,DIFC, FR, TIMES, 2B, ZENOG
INTEGER I,J

*t*t****************t*********************‘k**t****************t***t*****

* SZIT STEP SIZE FOR THE ROOT FINDER ROUTINE FOR TAUBAR *

****t*******‘k*t****rt***t*t**********i**‘t***ttrt**t*****x**tttt*******x*

g
13U

08 DTAUB = 0.05
J L
'g ) A‘,“',"'" t***tt************t*tt*********tr**t******t*tt*t******t**t*****ttxt*t*k*
2 g;g * SET HEADINGS FOR OUTPUT *
x ‘," bl e AL LR L RS e RS LR RS TR R P R e R T L L L T L L P urarurur
P
LS. 2 WRITE(8,*) ' DATA FOR SHEET LENGTHS AND THICKNESSES FOR WATER'
1 WRITE(8,*) ' 1IN THE SMALL SCALE LSR.'
X g WRITE(8,%*) ' !
P 2 WRITE(8,*) ' THE FOLLOWING PARAMETERS WERE USED:’
§ WRITE(8,*) ' !
& Fi*g WRITE(8,*) ' SLIT WIDTH: 0.03416 M'
R Y WRITE(8,*) ' SLIT THICKNESS: 8.128E-5 M'
- -£§ WRITE(8,*) ' DENSITY: 1000 KG/M"3"
7 A WRITE(8,*) ' SURFACE TENSION: 7.282E-2 N/M!
o b WRITE(8,*) ' GRAVITY: 9.81 M/S~2'
7 S WRITE(8,*) ' °*
g *g§ﬂ WEBER NUMBERS START AT 20 AND GO THROUGH 500°
W

'
WRITE (8,*) *
'
'

WRITE (8, *)
FROUDE X-BAR TAUBAR Z2-BAR Z-

A WRITE (8, *) WEBER
X +BAR'
. WRITE(8,*) ' NUMBER  NUMBER NG
g
o 1
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WRITE(8,*) ' !

A A A EE R A A AR AT A AT AR C TR A A AR AR AN N AR A AR A XA AR AR XIX AKX TR XN XN

* START LCOP FOR WE FRCM 2C TO 500 BY 20 *

*Y****Qt*f‘lﬂl*‘k*ttt**t?'tf't**t*tlt*ﬁi?**!*tt**f***!I*f*ti!**ﬁktk******'

Do 10, I = 1,25
W= = 20.0*I
FR = 2.6735*W

.
*r******ttt******tt***t?f*t**t*******;*****ttt*twttt**t*!*tt*t*******t**

* DEFINE NU = (FR*SQRTI)/ (3*SQRTWE) *

T A R I T PRI L 2 R 2 2 2 2 2 A S R RS EEEEAELE SRS R AR

NU = 1.2603*SCRT(WZ)

*******tt*************t!t*tt**t**t****t**t*ttt***tt*t*t***!*******t*****

* START LCOP FOR X-BAR FRCM 1 TO 0 BY 0.1 *

t******!t**************t!ttt****t*xx*ttktttt**t*ttf?******fxt******t***t

po 20, J = 10,0,-1
=2 = 0.1*7
O R e s L2 e SR R R RS 2RSSR RS S S L 2y

* FIND Z-3AR WITH NO GFRAVITY FCR THE GIVEN WE AND X-3aR *

*t*****tt***t**i*t!*ttr!t*x*t****tt*ktt**ttt*t***r*'t*!*!t*tt**kt**x*x*x

ZENOG = SQRT(WE/8.0) - XB*SCRT(W=/8.0)

******t*tt****t*****t**tttttt*********t**t******t**t***tt**t******tt****
* BEGIN THE ITERATIVE RCCT FINDING TECHNIQUE TO FIND TAU-BAR GIVEN WE *
* AND X-3AR ’ *

t**x*t*!*t*!***t***t****tt************t**********!*!****X*ttx****tt*****

i}

TAUB1 0.05
30 TAUB2 = TAUBl + DTAUB
DIF1 = 1.0 - NU*{TAUBLl**(-1.5) + 3.0*TAUBl**(-0.5) - 4.0) ~ XB
DIF2 = 1.0 - NU*{(TAUB2**(-1.5) + 3.0*TAUB2**(-0.5) - 4.0) - XB
IF (DIF1 .EQ. 0.0) THEN
TAUB = TAUB1
ELSE IF (DIF2 .EQ. 0.0) THEN
TAUB = TAUB2
ELSE IF (DIF1*DIF2 .LT. 0.0) THEN

GOTO 40

ELSE
TAUBl = TAUB2
GOTO 30

END IF

40 TAUBL = TAUBl
TAUBR = TAUB2

S0 TAUBC = (TAUBL + TAUBR)/2.0
DIFL = 1.0 - NU*(TAUBL**(-1.5) + 3.0*TAUBL**(-0.5) - 4.0) - %3
DIFC = 1.0 - NU*(TAUBC**(-1.5) + 3.0*TAUBC**(-0.5) - 4.0) - X3
DIFR = 1.0 - NU*(TAUBR**(-1.5) + 3.0*TAUBR**(-0.5) - 4.0) - B

, e Lot
RTINS I TS S X1 SRR BB LRI D-F
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IF¥ (ABS(DIFC) .LT. 0.0001) THEN
TAUB = TAUBC

ELSE IF (DIFL*DIFC .LT. 0.0) THEN
TAUBR = TAUBC
GOTO 50

ZLSE
TAUBL = TAUBC
GOTO S0

END IF

22 R AR AR SRR 2SR R R X RN SSEEE SRS 2R RSS2SR RS RRtRR RS RN

* SUBSTITUTE THE FOUND VALUE FCR TAU-BAR INTO THE TIME-BAR EQUATION *
L R e e R e R s R R R e R R E

TIMEB = (FR*(TAU3*=*(-1.0) - LOG(TAUB) - 1.0))/4.0

ISR AR R R A ESE LRSS RS2 R RSRYYREEESS SRR R R Al Ran Rl Rl R EEE SR

* SUESTITUTE THE VALUZ FOR TIME-BAR INTO THE Z-BAR EQUATION *

L2 2SS ERERRRRSS SR 222 SRS 22S PRS2SRt 2Rkt bt Rs R S atR R

23 = (TIMEB*TIMEB)/(2.0*FR) + TIMEB
IT (XB .EQ. 1.0) 2B = 0.0

2 R R R R R E IR RS EE FEE NS SE SIS 2SS SRR RR R RS RRRR SRRl Rt RS SRS

* QUTPUT THE DATA, END THE LCCPS, AND TERMINATE THE PRCGRAM *

I EE R R R A FEEEEEEEEE SRS RS R SSS SRR SRS AR RSt SRttt REe RS R

55 FCRMAT(1X,F8.2,F10.3,F8.2,F11.5,F11.5,F11.5)
WRITE(8,53) WE,FR,XB,TAUB, ZB, ZBNCG

20 COCNTINUE
WRITE(8,*) ' '
10 CCNTINUE

sTCcP
END
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LA SR RS R RS AR EEEEEEEEEEEEE R R EE R R R R R R R R e e R S R SRR RS A R R R R 2

AUTHOR: MATTHEW S. MCMASTER *
* DATS: 12-5-91 *
* ~
* TITLZ: SHAPE *
b 4 b 4
* PURPCSZ: TO DETERMINE THZ CRCS3S-SECTICNAL SHAPE CF THEZ SHEET *
* ASSUMING PRCPCRTIONAL SECCOND DERIVATIVES *
* USING A FOURTH-ORDER RUNGE KUTTA TECHNICUE *
* *
* YARIASLI KEY *
* *
* ETA : ETA ARRAY .. *
* THETA : DETA/DXI ARRAY : *
*  XI : XI ARRAY *
* ACBAR : AC-BAR *
* 0 : TAU/RE *
* ALPHA : ALPHA *
* ABAR : A-BAR *
* ETAMAX : ETA~MAX *
* ELLI? : EZLLIPTICITY, 2*ZTA-MAX/R-BAR *
IS S S SRS R EE S REEEEEEEEEERRAR R R R RRER P EEEEELEEEE Rl it b s b SRttt S X &S

EE R EE R SRR SR EEEEEE LSRR 2RSSR RS R SRR Sl Rl Bl Rt ERlREslEEl R & E R
*

* DECLARE VARIABLES

(S22 SR EEE S R RS RS2SRRSR R RS YRR S22 SRRt Rt Rt Rttt E LS R

REAL XTA,THETA,XI,AC22AR,(Q,ALPHA,ABAR,ETAMAX,DXI,DIF,FETA,FTHETA,

+F,K1,X2,K3,K4,C1,C2,C3,C4,ELLID
INTEGZR I, J
DIMENSION ETA(0:6000), THETA(C:6000),XI(0:60C0)

AAEA A KRR KR IR A AT AR AR AL AR R AR LA AKX AR AAKLARAXN KA AN AR TN AN > x ke kh

* SET ACZ2AR, Q, ALPHA, AND THE XI ARRAY ' *

e

I Z S P SRS E S ERREE RSS2 222 R R 2R RRRSRSRR 2Rttt bl s bR ARl Rl E RS

ACBaR = 2000.0
Q = 1.1952/ACBAR**0.3813
ALPHA = -0.7571 + 0.1206*LOG(ACBAR)

DXI = 0.05
Dc 2, I = 0,6000
XI(I) = I*DXI

2 CONTINUE
I 2 R R R R R R S22 2223222 SR TSRS R R RS L2222 2R R R S Rttt S S

* USING THEZ RUNGE-KUTTA TECHENIQUE DETERMINE THE ETA AND THETA ARRAYSZ *

EE AR A AR R E R K AR I R AR AR AR KRR AN X AR AKX A KA RRARRIKREARKXAKRR AL AKX RA KRR KRR IR AN X K& R

1 ETA(0) = 0.0
ETA(1l) = (DXI*{(4.0*(1+ALPHA))/Q - DXI))**0.S5

THETA(Q0) = 0.0
THETA (1) = ((2.0*(1.0+ALPHA))/Q -~ DXI)/ETA(1)

ABAR = (ETA(1l) *DXI)/2.0

Do 10, I = 2,6000

K1 = THETA(I-1)
Cl = F(ETA(I-1),THETA(I-1),ABAR,ACBAR,ALPHA,Q)
K2 = THETA{I-1) + (DXI*Cl)/2.0

SRR
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CZ = F(ETA(I-1) + (DXI*K1)/2.0,THETA(I-1) + (DXI*Cl)/2.0,ABAR,
+ ACBAR, ALPHA, Q)

K3 = THETA(I-1) + (DXI*C2)/2.0

C3 = F(ETA(I-1) + (DXI*X2)/2.0,THETA(I-1) + (DXI*C2)/2.0,ABAR,
+ ACBAR, ALPHA, Q)

K4 = THETA(I-1) + (DXI*C3)

C4 = F(STA(I-1) + (DXI*K3),THITA(I-1) + (DXI*C3),ABAR,AC3AR,
+ ALPHA, Q)

ETA(I) = ETA(I-1) + DXI*(K1l + 2.0*K2 + 2.0#*K3 + K4)/6.0

THETA(I) = THETA(I-1) + DXI*(Cl + 2.0*C2 + 2.0*C3 + C4)/6.0

IF (ETA(I) .LT. ETA(I-~1) .AND. ETA(I-2) .LT. ETA(I-1) .CR. ETA

+ (I) .EQ. ETA(I-1) .AND. ETA.(I-2) .LT. ETA(I-1)) ETAMAX = ETA
. + (I-1) o
IF (ETA(I) .GT. ETA(I-1l) .AND. ETA(I-2) .GT. ETA(I-1l) .CR. ETA
+ (I) .EQ. ETA(I-1) .AND. ETA(I-2) .GT. EZTA(I-1)) GOTO 30

ABAR = ABAR + DXI*(ETA(I) + ETA(I-1))/2.0

oA L

10 CCNTINUE

Iy L E R EE SRR RESELE RS EERERERER RS2SRSS RS RRERRER R RRRitint it ittt At RS R SR B
¥ * CHECX THE BOUNDARY CONDITION THAT AT THE MINIMUM ETA SHOULD EQUAL  *
E * ONE 2AND CHANGE ALPHA UNTIL ETA DCES EQUAL ONE *
= LR SR SR S SRS LRSS R SRS E R R RS RRR RS2SR RRRRER RS R RN EREEt Rt et R R aR RS
3

G 30 DIF = 1.0 - ETA(I-1)

% IT (ABS(DIF) .LT. 0.0001) GCTO 35

;%} AZPHA = ALPHA + DIF/20.0

i

GCTO 1

s

ﬁg&&@ﬁ

IZ2 R 2SS S RS RS EASSSE RS SR E222 22222 R 2Rttt ata st SRR R 4

* CHECX THE CONDITION THAT AT THE MINIMUM ABAR SHOULD EQUAL ACBAR AND *
* CHANGE Q UNTIL ABAR LCOES EQUAL ACBAR *

ia“)!. *******2t**************t*t*****t***t****t**?*****i******'********t*x****
PR
LA 35 DIF = (ACBAR - ABAR)
R I7 (ABS(DIF)/ACBAR .LT. 0.0001) GOTO 37
% Q = Q + DIF/30000.0
: _%E‘ GSTO 1
' _;; ii***tﬁti*t**‘k**tt***t**t****iﬁ*t**i****t******‘**t*****t*t***it****t****
3 * CALCTULATE THE ELLIPTICITY, OUTPUT THE DATA, AND TERMINATE PROGRAM  *
, ;‘: R R R R R R R R R R R R R R R R R R R SRR R R 2222222 2 RS2SRSS R A S22 2222 a2 Ratsaadd s o X
Lk
PR 37 ELLIP = (2.0*ETAMAX)/XI(I-1)
e 38 FCRMAT (1X,F8.2,F12.4,F12.4)
S WRITE (8,*) 'THE FOLLOWING ARE THE RESULTS FOR ETAMAX, RBAR, AND'
g WRITE (8,*) '2*ETAMAX/RBAR, GIVEN THE VALUE FOR ACBAR. ALSO'
5 = WRITE (8,*) 'GIVEN IS THE VALUES FOR TAU/RE AND ALPHA NECESSARY'
- ' WRITE (8,*) 'TO OBTAIN THE RESULT. ALSO GIVEN IS A TABLE OF'
K3 CE WRITE (8,*) 'SAMPLE VALUES OF ETA AND DETA/DXI FOR THE SHCWM'
] £ WRITE (8,*) 'VALUES OF XI.'
% e WRITE (8,*) ' !
H i 40 FCRMAT (1X,A,F8.3)
5 41 FORMAT (1X,A,F9.4)
R 42 FGCPRMAT (1X,A,F10.5)
s WRITE (8,40) 'ACBAR = ', 6ACBAR
.?ﬁ_
adaq
‘f

I ASEEN - ~ P
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PR RENRE
WRITE (8,40) 'ETAMAX =', ETAMAX IR

WRITE (8,40) 'RBAR =',6XI(I-1)
WRITE (8,41) '2*ETAMAX/RBAR =',ELLIP
WRITS (8,42) 'TAU/RE =',Q
WRITS (8,42) 'ALPHA =',6ALPHA
WRITE (8,%*) ' '
WRITS (8,%) ' XX ETA DZTA/DXZ*
WRITES (8,%) ' - —— e ]
Do 22, J = 0,I-1,20
WRITE (8,38) XI(J),ETA(J),THETA(J)
22 CONTINUE

STCP ‘a
END )

ITE P PR RS RS B RS PR RS PSR ARSI EEE LSS SRR R A RREES R R EEEEREE R

* FUNCTICN F SUBPRCGRAM *
* F IS BASICLY THE EQUATICN BEING SOLVED

PR R R R R E R R R 2R 222 R 2 SRS PR R RS RS RS ES SR RS SRR E R tRe s Ra Ry X R R )

*

FUNCTICN F(FETA,FTHETA, ABAR, ACBAR, ALPHA, Q)

REAY FETA,FTHETA, ABAR, ALPHA,Q,F,AC3AR

ZTA*FETA*ACBAR

F = ((((ABAR*ABAR* (1.0 + FTHETA*FTHETA))/ (T
/(2.0%(1.0 + ALPH2)))

+ *ACBAR) - Q) *(1.0 + FTHETA*FTHZTA)**1.5)

END

IR 5 Y T R TP L
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E
* AUTHCOR: MATTHEW S. MCMASTER
* DATE: 12-6-91

»

* TITLI: SHAPE2

*

* PURPCSZ: TO DETERMINE THE CROSS-SECTIONAL SHAPE OF THE SHEET
* ASSUMING A CCNSTANT SECOND DERIVATIVE

x

*x

*

*

*

x

*

,
t

USING A FOURTH ORDER RUNGE-XUTTA TECHNIQUE

VARIASLE KEY

*
*
~
L
*
®
*
»*
*
*
*
»
*
*
*
x
*
*
*x
*
=

ETA : ETA ARRAY .
THETA : DETA/DXI ARAY -0
XI : XI ARRAY

* AC3AR : AC-BAR

* Q : TAU/RE

* R : D~2ETA/DZETA~2

* ABAR  : A-3AR

* ETAMAX : ETA-MAX

* ELLI® : ELLIPTICITY, 2*ETA-MAX/R-BAR

22 E R R RS R R E R E R E RS EEE S SRR RRSRRSSLSAS SRR SRR RS S R R ERRSREltR sl n Sl SN

IR SRS SRR R SRR RSs 2 RSs222 3 XR2R2RsRRilis sttt e R SRS S
*

* DECLAFZ VARIABLES

(2 R R R R R R R R R P R R I RS RS E R RS R R R R RS SRR S SRR SRRttt RE R RERE S

IR TA,THETA,ABAR, C,ACBAR,R,DXI,DIF,ETAMAX, 7, XI,FETA, FTHETA,

+K1,X2,K3,K4,C1,C2,C3,C4,ELLI?
INTZGER I,J
DIMZNSION ETA(0:600C),THETA(0:6000),XI(0:6000)

222 2 R R R P R R R S P RSS2 S SRR RS AR R RS AR SEEER s s R EEEE

* SET ACZAR, Q, R, AND THE XI ARRAY *

'ﬁt**tt*tttt***t*t*****t*!tt**tt**tttt**i*******t**tt*t*t*****x****!t*tl*

ACZAR = 2000.0

Q = 403.6506/ACBAR**1.3278

R = —=0.4827 + 0.0791*LCG(ACBAR)
DXI = 0.05

DC 2, I = 0,6000

XI(I) = I*DXI
2 CCNTINUE

IZE RS AER S SRSl st tRRRRR ARt atR sttt S

* USING THE RUNGE-KUTTA TECHNIQUE DETERMINE THE ETA AND THETA ARRAYS *

222 2RSSR R NSRS E R RS R R RS RRS SR 2RSSR RRERRS RSttt R R it E R S

1 ETA(0) = 0.0
ETA(1) = (DXI*(4.0/Q - DXI))**0.5

THETA(0) = 0.0
THEZTA(L) = (2.0/Q - DXI)/ETA(1l)

ABAR = (ETA(1l)*DXI)/2.0

DO 10, I = 2,6000
THETA(I-1)

Kl =
Cl = F(ETA(I-1),THETA(I-1),ABAR,ACBAR,R,Q)
K2 = THETA(I-1) + (DXI*Cl)/2.0

A i b ;.,_».‘zz.'__,," P NI ol
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C2 = F(ETA(I-1) + (DXI*K1)/2.0,THETA(I-1) - ~I-=T Z.L==%,
+ AC3SAR, R, Q)

K3 = THETA(I-1) + (DXI*C2)/2.0

C3 = F(ETA(I-1) + (SKXI*X2)/2.0,THZTA(I-1) - —I=-T TZT..-==1,

+ AC3AR, R, Q)
K4 = THETA(I-1) + (ZXI+C3)
Cd = F(ETA(I-1) + (CKXI®KX3),THITA(I-1) + (==, ==.T"=.
+ R, Q)
ETA(I) = ETA(I~-1l) + DXI*(Kl + 2.0*X2 + 2.2 == -z, .
-— = -

THETA(I) = THETA(I-1) + DXI*(Cl + 2.0*C2 = Z.IvZZ - 24 =2

IF (ETA(I) .LT. ET3(I-1) .AND. EZTA(I-2) .IZ. zZT2I-1 = =
+ (I) .EQ. ETA(I-1) .2D. ETA(I-2) .LT. ETR(I-1!: I&E¥=r =%
+ (r-1) o

IF (ETA(I) .GT. ZTa(I-1) .AND. ETA(I-2) .Zo. T2 -1 I ==
+ (I) .EQ. ETA(I-i) .&ND. ETA(I-2) .GT. TT2.2-1 =0 &2

ABAR = ABAR + DXIT*(ZTA(I) + ETA(Z-1))/2.°2

10 CONTINUE

AT AT A AN N A A A P I T A A A T A XA A AN T T T FT T I VYT rrr—— Y
* CHZCX THE BOUNDARY CCNDITICN THAT AT THS MINIMUM I =277 Z7=
* CNZ AND CHANGE R UNTIL =ZT2 ZCES EQUAL CNE

AR SRS SRS SRR E RS ssER lEsRRRsRRRRERRRRR Rl il s s

R LA o

S A ormy T

Y 30 DIF =1.0 - ETA(I-1)

;:;" IF (ABS(DIF) .LT. 0.05CI) GCT0 35

R =R - DIF/30.0

i3 GCTO 1

1

' 2 S 2 SRS RS SESE RS SS R RRE S sl R LSRR AR RS RS R SRR REasanadda s 2y 0]
5" * (CHECX THE CONDITICN THAT AT THI MINIMUM 23R SECTLS T3 a==" =— =~
* HANGE Q UNTIL ABAR DOZS I{TAL ACBAR *
".' P R g R R R R R R R R e N L 2 R R R R R R R R R R R R e e s 2
‘d 35 DIF = ACBAR - ABAR

IF (ABS(DIF)/ACE2R .LT. 3.0001) GCTO 37

i Q = Q - DIF/35000.0

. GCTO 1

‘.', 2 2SS S S ESERERERRRERRRERERESSE2 SRS RS2SR X R R Rt aaaaadans o o, -0 3
143 * CALCULATE THE ELLIPTICITY, CGTPUT TEEZ DATA, AND TRV === =~
‘~ 2 2RSSR REEs ettt iRt i 2 2222 R R R Rl tanhans s s sy o0t
b

%

$ 37 ELLIP = (2.0*ETAMAX)/XI(Z-1)

;‘,’ 38 FORMAT (1X,F8.2,F12.4,712.4)

£ WRITE (8,*) 'THE FOLLCWING ARE THE RISULTS FCR Iy, ==, 6 ——
'? WRITE (8,*) '2#*ETAMAX/R=3X, GIVEN THE VALUE FCR AT=dX. X=U
WRITE (8,*) 'GIVEN IS TSES VALUES FCR TAU/RE AND =T, T—=—

L& WRITE (8,*) 'NECESSARY TO OBTAIN THE RESULT. AL =X ==

.' WRITE (8,*) 'TABLE OF SAVPLE VALUES CF ETA AND DEATXI 3= =
kg WRITE (8,*) 'SHOWN VALUES OF XI.'

WRITE (8,%*) ' '
40 FOPRMAT (1X,A,F8.3)
41 FORMAT (1X,A,F9.4)
42 FOPMAT (1X,A,F10.5)
WRITE (8,40) 'ACBAR = ',AC3AR

S T
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WRITE (8,40) 'ETAMAX =',6 ETAMAX
WRITE (8,40) 'RBAR =',XI(I-1)

WRITEZ (8,41) '2*ETAMAX/RBAR =',ELLIP
WRITE (8,42) 'TAU/RE =',Q

WRITE (8,42) 'D*2ETA/DZETA~2 =',R

T (8'1) L T

- -

WRITE (8,*) ¢ XI ETA DETA/DXI"

ITE (8,*) ! - -— -

DO 22, J = 0,1I-1,20
WRITE (8,38) XI(J),ETA(J),THETA(J)
22 CONTINUE

STOoP -
END -

*************ti**************tt***k*‘k****k**t**********t*****t**t**t*tt**

* FUNCTICN F SUBPROGRAM
* F IS BASICLY THE EQUATION BEING SOLVED

x
*

***t**ttt2tt*************t***ttt********t*******************I’******t**x*

FUNCTION F(FETA,FTHETA, ABAR, ACBAR, R, Q)

REAL FETA,FTHETA, ABAR,R,Q,F,ACBAR

= (({(ABAR*ABAR* (1.0 + FTHEZTAXFTHETA))

-

TA*FETA*ACBAR*

T /(T2
+ AC3AR) - Q)*(1.0 + FTHETA*FTHETA)**1.5)/2.0 - R

END
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